Material properties of coyote dentine under bending: Gradients in flexibility and strength by position
نویسندگان
چکیده
We investigate the nonlinear properties of dentine from the upper canines of coyotes Canis latrans with bending tests. With the results we predict the behavior of whole canines under load. Coyote dentine is not homogeneous but is stronger and more ductile farther away from the pulp cavity. The modulus of rupture (MOR) first increases and then declines with distance from the pulp cavity. Our analysis of the composite nature of dentine produced by these gradients indicates that there may be an adaptive explanation with the composite having nearly the strength of the strongest dentine and a work of fracture greater than even the most ductile dentine. Coyote dentine is considerably stronger than human dentine. In coyotes, the peak MOR, a measure of bending strength, is 480 MPa, compared with a maximum of 225 MPa for human dentine. This value is about the same as the weakest coyote dentine that we found near the pulp cavity. Finally, enamel plays, at most, a small role in the bending strength of the whole tooth. Our results indicate that enamel under tension adds little to strength, but we cannot dismiss a small role for enamel in compression.
منابع مشابه
Thermal Buckling Analysis of Functionally Graded Euler-Bernoulli Beams with Temperature-dependent Properties
Thermal buckling behavior of functionally graded Euler-Bernoulli beams in thermal conditions is investigated analytically. The beam with material and thermal properties dependent on the temperature and position is considered. Based on the transformed-section method, the functionally graded beam is considered as an equivalent homogeneous Euler-Bernoulli beam with an effective bending rigidity un...
متن کاملDelamination of Two-Dimensional Functionally Graded Multilayered Non-Linear Elastic Beam - an Analytical Approach
Delamination fracture of a two-dimensional functionally graded multilayered four-point bending beam that exhibits non-linear behaviour of the material is analyzed. The fracture is studied analytically in terms of the strain energy release rate. The beam under consideration has an arbitrary number of layers. Each layer has individual thickness and material properties. A delamination crack is loc...
متن کاملMechanical Properties of Graphene/Epoxy Nanocomposites under Static and Flexural Fatigue Loadings
In the present study, the effect of various weight fractions of graphene nanoplatelet (GPL) on flexural fatigue behavior of epoxy polymer has been investigated at room temperature and generally the temperature was monitored on the surface of specimen during each test. The flexural stiffness of grapheme nano-platelet/epoxy nanocomposites at 0.1, 0.25 and 0.5 wt. % as a main effective parameter o...
متن کاملElectroresponsive Acrylic Gels
This articles is comprised of two parts: a) an experimental investigation on the behavior of an acrylic gel under DC electric field and b) a physico - mathematical description.a) Gel rods made of poly [acrylamide-co-bisacrylamide] were partially hydrolyzed to different extents at pH 12 by teteramethylethylene diamine. Equlibrium properties of the resulting gels rods (water content,...
متن کاملبررسی نرم افزاری اثر بیومکانیکال اشکال هندسی پنجره ایجادشده در کورتکس فمور بر میزان استحکام استخوان
Introduction: In order to make a hole on the bone cortex, especially, in the tumors of body in order to do biopsy and curettage creating a hole circularly is routinely recommended. In evaluating resources and references for obtaining documentation based on prioritizing circular holes in bending load and pressure, no positive evidence was observed. For this purpose, two methods of software analy...
متن کامل